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ABSTRACT
Over 50 million people undergo surgeries each year in the United
States, with over 70% of them �lling opioid prescriptions within
one week of the surgery. Due to the highly addictive nature of these
opiates, a post-surgical window is a crucial time for pain manage-
ment to ensure accurate prescription of opioids. Drug prescription
nowadays relies primarily on self-reported pain levels to determine
the frequency and dosage of pain drug. Patient pain self-reports
are, however, in�uenced by subjective pain tolerance, memories of
past painful episodes, current context, and the patient’s integrity
in reporting their pain level. Therefore, objective measures of pain
are needed to better inform pain management.

This paper explores awearable system, named Painometry, which
objectively quanti�es users’ pain perception based-on multiple
physiological signals and facial expressions of pain. We propose
a sensing technique, called sweep impedance pro�ling (SIP), to
capture the movement of the facial muscle corrugator supercilii,
one of the important physiological expressions of pain. We deploy
SIP together with other biosignals, including electroencephalogra-
phy (EEG), photoplethysmogram (PPG), and galvanic skin response
(GSR) for pain quanti�cation.

From the anatomical and physiological correlations of pain with
these signals, we designed Painometry, a multimodality sensing sys-
tem,which can accurately quantify di�erent levels of pain safely.We
prototyped Painometry by building a custom hardware, �rmware,
and associated software. Our evaluations use the prototype on 23
subjects, which corresponds to 8832 data points from 276 minutes
of an IRB-approved experimental pain-inducing protocol. Using
leave-one-out cross-validation to estimate performance on unseen
data shows 89.5% and 76.7% accuracy of quanti�cation under 3 and
4 pain states, respectively.
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1 INTRODUCTION
In recent decades, the United States has faced an opioid epidemic,
with 40,000 lives lost annually due to opioid misuse [25, 99]. It is
estimated that around 25% of patients who have been prescribed
opioids for pain misuse them [111], about 5% of the misusers esca-
late to heroin, and about 10% of them develop an opioid addiction.
In addition, about 80% of people who use heroin have previously
misused prescription opioids [13, 17, 45]. Over 50 million people
undergo surgeries each year [37] in the United States, with over
70% of them �lling opioid prescriptions after surgery [54].

Due to the highly addictive nature of these opiates, the post-
surgical window is a crucial time for pain management to ensure
accurate prescription of opioids. However, a critical challenge in
painmanagement emerges from the fact that pain cannot be directly
measured without invasively accessing the nervous system [89].
Therefore, the current non-invasive gold standard for the assess-
ment of pain is the patient self-report of pain intensity [10]. Though
pain self-reporting is a common measure that re�ects a patient’s
conscious perception of the given painful sensation, it has several
signi�cant limitations, especially for long-term usage: (1) self-re-
porting is subjective and is in�uenced by the patient’s cognitive
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load and emotion at the time of reporting [64, 78, 79], (2) self-report-
ing introduces bias since frequent self-reporting of pain can create
pain perception [39], and (3) self-reporting cannot be assessed fre-
quently or continuously as this would present an unrealistic burden
on the patient.

Thus, there is a critical need for a more objective measure of
pain that is e�cacious and convenient for real-world daily usage.
Common biosignals that have shown potential in capturing pain-
related neurophysiological processes include electroencephalog-
raphy (EEG), electromyography (EMG), Galvanic Skin Response
(GSR), electrocardiography (ECG), and photoplethysmogram (PPG).
The most accurate and objective pain quanti�cation approach is us-
ing a fMRI machine [84]. However, this approach is expensive and
inconvenient since it is only available in a clinical setting. Studies
have used multiple features extracted from facial EMG (corruga-
tor and zygomaticus muscles), GSR, and ECG signals to classify
experimentally-induced pain from non-pain with accuracies rang-
ing from 79-91% [12, 16, 33, 47, 95, 106, 110]. Further improvement
of these approaches also integrates physiology-, video-, and voice-
based signals to predict pain. Recent studies have fused ECG, facial
EMG, GSR, and video data to achieve 80-84% accuracy in discrimi-
nating experimental pain vs. non-pain [46, 48, 62]. However, these
systems are often cumbersome because they require complicated
to setup, and do not support mobility settings.

In this work, we propose Painometry (Fig. 1), a multimodal sens-
ing system for objective pain quanti�cation that can be integrated
into various form factors (e.g. hat, headband, etc.). The key idea
is to capture the core signals that are directly correlated to pain
perception, namely the facial muscle activity above and between
our eyes, in combination with a small number of less pain-speci�c
signals. The light-weight form factor and a minimal number of
sensors enable the mobility of Painometry and its capability as
a wearable and daily device. Painometry aims to support a wide
range of applications, including in-hospital scenarios such as au-
tomatically and objectively answering the pain rating assessment;
assisting anesthetic monitoring; in-home pain assessment for ac-
curate dosing of pain relief medication; pain management such as
daily and real-time medication reminder; and, in long-term assess-
ments, development of intervention therapies bypassingmedication
schedules to address chronic pain.

The key challenges in developing such a system include: (1) ac-
curately capturing the speci�c muscle actively a�ected by the au-
tonomous nervous system during pain; (2) identifying a set of
pain-related features frommultiple bio signals that are useful in pro-
viding an objective pain quanti�cation; (3) and isolating di�erent
types of noise present in the recorded signals.

We introduce Sweep Impedance Pro�ling (SIP), a sensing tech-
nique that captures the minuscule movement of muscle under the
point where the sensor makes contact with the skin to capture
autonomous muscle activity in high spatial resolution with a small
number of sensors. SIP has advantages over existing impedance-
based sensing techniques in the capability of (1)measuring impedance
of the singular muscle group under the skin, (2) providing more
detailed information about the muscle over a range of sweeping
excitation frequencies, and (3) specifying with greater precision
the area of the muscle of interest. To improve the sensitivity of
the system, we leverage a small number of head-based biosignals

Figure 1: Top panel: Painometry signal recording sites in-
cluding positioning of PPG, GSR, EEG, and SIP sensors. Left
panel: Flowchart of stimulus processing from the onset of
acute pain through the autonomic nervous system (ANS) to
the sensing sites of the Painometry system. Right panel: Key
applications of the Painometry system include its use as a
postoperativemonitor, as well as inmitigation of opioid pre-
scriptions.

including EEG, GSR, and PPG. To objectively quantify di�erent pain
levels, we design a thorough experimental protocol to mimic acute
post-surgical pain, analyze the recorded biosignal data, and build a
quanti�cation model that utilizes pain-related feature extraction
and selection. We design the Painometry hardware following es-
tablished safety guidelines to ensure the system will not cause any
safety concerns.

Through this work, we make the following key contributions:
• Introducing a sensitive muscle activity detection technique,
Sweep Impedance Pro�ling (SIP).

• Proposing an objective pain quanti�cation algorithm in-
cluding a wide-range pain-related feature extraction from
recorded biosignals, a feature selection using a Recursive
Feature Elimination (RFE) method, and a light-weight classi-
�cation model.

• Evaluating pain quanti�cation of 23 subjects in an experimen-
tal protocol to mimic post-surgical pain with the accuracy
of 76.7% and 89.5% for 4 and 3 pain levels respectively under
leave-one-out cross-validation.

Though at current phase, this work is limited to in-lab experi-
ments and only targets acute pain in postoperative pain, it is the
�rst step in a concerting e�ort to target di�erent types of pain (i.e.
acute and chronic) and to reduce opioid overdose by developing
drug-free, fully closed-loop, and just-in-time pain coaching and
intervention systems.
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2 ANATOMY AND PHYSIOLOGY OF PAIN
In this section, we discuss the anatomy and physiology of pain to
understand the activation of autonomous nervous system (ANS,
Fig. 2) during pain. When activated, the ANS elicits identi�able
changes in muscle tone, heart rate, skin conductance, and brain
activity.

Pain perception. Pain is a conscious subjective experience that
results from the transduction of nociceptive stimuli into neural
signals that are transmitted to higher cortical brain regions [24]. The
sensation of pain is the result of tightly coupled neurophysiological
processes - the peripheral detection of nocicpetive stimuli and the
transmission and processing of these signals in the central nervous
system.

Acute postoperative pain. Acute pain refers to the short-term
e�ects of pain, typically lasting less than 3 months, and is directly
related to soft tissue damage with sharp and dull sensations [94].
After the 3 month window, chronic pain may develop and pain
can become progressively worse and reoccur intermittently. Strong
correlations exist between the severity of acute postoperative pain
and the development of chronic pain [80]. The postoperative time
window is also a period of concern relating to opioid misuse. Most
patients are subjected to opioid prescriptions following surgery,
putting them at risk of dependence. According to Brat et al. [9],
each additional prescription re�ll after surgery attributes to a 44%
increase in the likelihood of opioid misuse. For these reasons, pro-
viding a quantitative method for managing the intensity of postop-
erative acute pain to reduce the duration of opioid prescription is
the main goal of Painometry and guides the system and protocol
design processes.

Importance of objective pain quanti�cation. To determine
patient’s current pain state, physicians rely primarily on the pa-
tient’s subjective self-report, typically using a pain scale (e.g., Visual
analog scale (VAS) [38]). Patients’ report of their pain level using
the VAS is in�uenced not only by the current subjective level of
pain but also by patients’ pain tolerance, emotional state, current
environment, memories of past painful episodes, and willingness
to communicate painful experiences.

In addition, patients have di�culty providing a good estimate
of their current pain state because they have no objective way
to distinguish the score. The lack of an objective pain measure-
ment method can lead to biased pain evaluation and as result to
overdosing of patients and drug misuse [77], or underdosing and
unnecessary pain for the patients. Thus, an objective pain quan-
ti�cation system brings bene�ts in (1) removing the need for a
patient to verbalize and focus on their pain state, (2) improving
dosing, which can reduce the risk of developing an opioid addiction
while reducing patients’ su�ering, and (3) improving clinical and
healthcare systems with reliable assessments of patient conditions.

Noninvasive sensing of physiological pain expression. As-
sessing facial expressions of pain behavior is a viable noninvasive
technique to quantify pain [22]. A number of researchers have
placed emphasis on universality in expressions of pain, meaning
the same pattern of muscle activation consistently appears when
people are experiencing pain [18, 81]. The Facial Action Coding Sys-
tem (FACS) [22] is a precise measurement technique that many pain
studies have employed to accrue evidence that certain facial actions

Figure 2: Targets for autonomous nervous system pain re-
sponse: corrugator supercilii, heart, sweat glands, and brain.

are reliably correlated with pain [88]. The FACS assigns the activity
of distinct facial muscle groups to 44 unique action units (AUs).
Muscle groups of interest in the context of pain studies [18, 57, 81]
include (Fig. 2): (i) AU4 - Brow lowering, (ii) AU6/AU7 - Orbit tight-
ening, (iii) AU9/AU10 - Levator contraction, and (iv) AU12 - Oblique
lip pulling. In developing the SIP sensor employed in Painometry,
we referenced many of the protocols used by FACS to recognize
and classify statistically distinct movements of the corrugator su-
percilii [85, 86].

The hypothalamus and limbic brain regions involved in the per-
ception of pain are also involved in the modulation of the ANS.
These regions are responsible for bodily functions that are regulated
without conscious input, such as breathing, heart rate, vasomotor
activities, and re�ex reactions. The hypothalamus integrates regu-
latory input from the limbic system and regulates functions of the
ANS. These autonomic responses happen with real pain only (not
acted pain) and can be captured with the EEG sensor, pulse sensor,
GSR sensor, and muscle activity sensor accordingly.

With the goal of having a wearable system suitable for daily
usage, one of the areas where it is feasible to accommodate all those
sensors is the Fpz-Oz horizontal line in the 10-20 system [40] that
covers the forehead area (as depicted in Fig. 1).

We also base our choice for sensor placement on the intuition
that the forehead (1) provides a good measurement for GSR [107],
(2) is a common area to measure PPG signals [115], and (3) covers
a part of the corrugator supercilii. Since the signals resulting from
muscular contractions initiated by the autonomic innervation of
corrugator supercilii are typically small compared to larger signals
from neighboring facial muscles (e.g., eye blinking, eye movement,
and jaw movement), the passive EMGmeasurement with electrodes
over the eyebrow is prone to noise. Thus, there is a need for both
a high spatial resolution and a sensitive measurement to capture
autonomic corrugator supercilii responses. In the next section, we
will discuss the overview of Painometry and our design goals.
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3 SYSTEM OVERVIEW
In this section, we describe the overall design of Painometry, the
multimodal sensing headband for objective pain quanti�cation
based on the analysis of physiological expression of pain and auto-
nomic responses. The design goals include (1) sensitive and high
spatial resolution muscle activity sensing; (2) a reliable and safe
multimodal physiological sensing system; and (3) highly accurate
and light-weight pain level quanti�cation.

Sensitive and high spatial resolutionmuscle activity sens-
ing.Muscle activity is traditionally measured using the electromyo-
graphy (EMG) technique. EMG sensors passively capture the biopo-
tentials of the muscles under the sensing electrodes. However, the
recorded signals are usually the combination of biopotentials from
multiple sources due to nearby muscle activity being detected by
the electrodes, which is known as cross-talk noise. One example
of cross-talk noise is that the EMG sensors on the forehead also
capture eye movements and blinking. In order to capture the activ-
ity of the muscle group of interest only, one of the conventional
solutions is to have multiple sensors that capture biopotentials from
other muscle sources and then use regression or ICA techniques to
extract the necessary information [103]. However, this approach
requires the addition of multiple electrodes attached to the head in
order to accurately extract the EMG contribution of the corrugator
supercilii group. So, in order to capture the muscle activity of the
corrugator supercilii muscle with fewer sensors and to overcome
themulti-source noise limitations, we explore the Sweep Impedance
Pro�ling (SIP) sensing technique. By attaching only two sensors
on top of the muscle group of interest, this sensing method can
capture the change in impedance caused by the contraction of that
muscle group.

Reliable,wearable, and safemultimodal physiological sens-
ing system. In order to capture various physiological expressions
of the human body, a conventional multimodal sensing system in-
cludes di�erent combinations of sensing modalities such as EEG,
EMG, ECG, eye tracking, facial expressions, GSR, etc. These sys-
tems are popular in many mental health and cognitive-related
research and application such as stress detection [6, 51], seizure
prediction [34, 108], and sleep monitoring [19, 20, 72]. Existing
pain-sensing applications analyze individual bio-signals or di�er-
ent combinations of EEG, EMG, GSR, and PPG to explore distinctive

features among di�erent pain states [50, 71, 75]. However, there are
challenges in bringing all mentioned sensors together in a singular
wearable hardware device that satis�es a daily usage scenario. In
particular, integrating multiple sensors on a small-size hardware
is prone to cross-talk interference noise. In addition, the GSR and
SIP sensors that we employ are considered ‘active’ sensors where
a current runs through part of a human body. Thus, it is required
to consider safety constraints. We carefully design our multimodal
sensing system including SIP, EEG, GSR, and PPG to minimize
the cross-talk noise and restrict the ‘active’ sensors under safety
thresholds.

Highly accurate pain level quanti�cation. The main chal-
lenge in building the pain quanti�cation system is the subjective
nature of pain perception. Another challenge is determining distinc-
tive features among di�erent pain states. Existing work provides
various �ndings in pain-related feature extraction from multiple
sensors, however, there is no universally common feature set that
we can directly employ into our work. We thoroughly design an
experimental pain-inducing device and data collection protocol to
obtain highly accurate ground truth labels We extract a set of possi-
ble features from each corresponding biosignal and use a recursive
feature elimination as a feature selection algorithm to identify the
most discriminating set of features. Finally, we aggregate all the
features within one chunk of data to create the sample for our
learning model.

Painometry System. Fig. 3 illustrates two main components of
Painometry including (1) a wearable multi-modal sensing device
to capture physiological pain expression, and (2) an Objective Pain
Quanti�cation Software running on the host computer (i.e., mobile
phones or PCs). Painometry hardware can be integrated into various
form factors (e.g. hat, headband, or eye-glass). The host device
receives the streaming data from all the sensors, processes the data,
and quanti�es the current pain level of the user. There are three sub-
components of the Painometry’s software architecture including
(1) Signal pre-processing, (2) Dedicated sensor feature analysis, and
(3) Pain quanti�cation algorithm. In the following discussion, we
will describe these sensing hardware and software components in
details.
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Figure 4: SIP sensors over corrugator supercilii and the cor-
responding circuit.

4 SWEEP IMPEDANCE PROFILING
As stated in previous sections, we seek an accurate and sensitive
muscle activity detection method which requires minimal elec-
trodes and �ts into a wearable form factor for daily usage. Existing
EMG sensing technique is not applicable in our goal of capturing
the movement of corrugator muscle group. The reason is that the
corrugator supercilii is smaller than other action units related to
pain as stated in Section 2. Thus, its activities are overlapped by
other AUs’ activities.

We introduce Sweep Impedance Pro�ling (SIP), a technique that
measures the impedance of surface muscles using multiple AC ‘ac-
tive’ signals; and infers directly the movement of the muscle groups.
This sensing method requires to put only two electrodes over the
position of that muscle. In our case of the corrugator supercilii,
these two electrode positions are easy to located by identifying (i)
the middle of the eyebrown and (ii) the junction between eyebrow
and eyesocket (next to the middle of two eyebrows called glabella).
After capturing the responses to these AC signals, we are able to
analyze the relation between muscle impedance and muscle length.
Combining multiples measurements from that AC frequency range
provides a rich feature pro�le of the selected muscle group.

Impedance of human body part. The impedance / of an ob-
ject is given by: / = ' + 9- where ' is the resistance and - is the
combination of capacitance-⇠ and inductance ! of the given object.
In human-body-related applications, inductance plays a minimal
role in standard impedance measurement [91], so the imaginary
impedance component can be simpli�ed to - = -⇠ = 1/2c 5⇠ ,
where 5 is the excitation frequency. As a result, total impedance
magnitude |/ | and impedance phase q of a human body part will
be calculated as:

|/ | =
q
'2 +- 2

⇠ ,q = C0=�1 (-⇠/') (1)

Relation of muscle impedance to muscle movement. We
model the muscle as a solid cylinder with length of ! and radius of
A . The muscle resistance and self capacitance will be calculated as
follows:

' = d (!/�), ⇠ =
⇣
8 + 4.1 (!/A )0.76

⌘
n<A (2)

where d is the muscle resistivity coe�cient, � is a cross-sectional
area, and n< is overall muscle permitivity.

The intuition given by Eq. 1 and 2 is that the dimensions of
the muscle will change due to muscle activity (e.g., the autonomic
innervation of corrugator muscle in our scenario). In additon, ' and
⇠ behave di�erently based on the change of muscle dimensions !,
A , and �. This leads to the non-linear changes of total impedance /
due to muscle activity. Due to the dependence of Z on excitation
frequency 5 , sweeping through a wide range of excitation frequen-
cies will provide corresponding values of / (5 ) and yield a ‘pro�le’
of the selected muscle group.

Fig. 4 shows the anatomy of facial muscle related to the corru-
gator supercilii area under four layers of skin, subcutaneous fat,
frontalis muscle, and corrugator muscle. Since we care about corru-
gator muscle, the corresponding basic sweeping circuit consists of
four impedances as shown in Fig. 4. In this model, /⇢1( and /⇢2(
are dependant on the contact between electrode and skin and are
calibrated using lead-o�-detection (mentioned later in Sec. 6). Thus,
sweeping excitation frequency 5 over a short period achieves the
corresponding impedance pro�le of corrugator muscle group under
di�erent pain states.

DFT-based impedancemeasurement.Among various impedance
measurement technique, we choose the Discrete Fourier Transform
(DFT) technique [28]. This method provides the best calculation
accuracy of an unknown impedance while requires smallest mem-
ory space in hardware realization [56]. It correlates the captured
AC signal with sinusoidal basis functions, which are both sine and
cosine waveforms. This correlation results in a complex numeric
value, in which the imaginary and real parts represent the correla-
tion of the signal with the sine and cosine waveforms, respectively.
From this value, its magnitude is used to compute the magnitude
spectrum, and its phase value is used to obtain the phase spectrum.
Speci�cally, given the excitation signal: E( (C) = +02>B (2c 5 C + \ )

The real '⇢ and imaginary �" parts of each sample 8 2 [0..# �1]
after the DFT correlation process is:

8>>>><
>>>>:

'⇢8 = 2
#

Õ#�1
==0

h
E8 (=) )2>B

⇣
2c
# =

⌘i

�"8 = 2
#

Õ#�1
==0

h
E8 (=) )B8=

⇣
2c
# =

⌘i (3)

where) is sampling interval and # is the number of sample respec-
tively.

Magnitude and phase of the unknown impedance / will be cal-
culated as following with reference resistor ':

|/ | =

q
'⇢2

/ + �"2
/q

'⇢2
' + �"2

'

,q = C0=�1
✓
'⇢/ �"' � '⇢'�"/

'⇢/'⇢' + �"/ �"'

◆
(4)

DFT-based measurement provides accurate impedance measure-
ment but has large numbers of sampling and calculation require-
ment to store the above resulting '⇢ and �" components [56] (i.e.
high processing power). We mitigate this drawback with our choice
of hardware components (Section 6). Fig. 4 shows the feasibility of
capturing the movement of corrugator supercilii using SIP under
the sweeping range 10:�I to 100:�I (covers the known frequency
for surface impedance analyzer [73]). The safety design and integra-
tion of SIP with other conventional sensors (EEG, PPG, and GSR)
will be discussed in the next section.
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5 PAINOMETRY HARDWARE DESIGN
5.1 Design considerations
Safety consideration. Since our customized SIP and GSR sensors
are considered ‘active’ (i.e., they excite electrical signals to parts of
the human body), special precautions need to be implemented to
ensure user’s safety. According to ICNIRP guidelines [36, 74] and
IEEE C95.1 standard [4], 1mA is considered a safety threshold for
DC and AC signals having the frequency below 1MHz. As a result,
our SIP sensor has been con�gured so that it has the output AC of
0.98+?? andmaximum output current of 0.25<�. Moreover, the AC
signal from SIP must not interfere with the brain signal frequencies
recorded by EEG sensor, i.e., the frequency must be larger than 1
:�I [32]. The GSR sensor is designed to restrict the DC signal to 1.2
+ applied directly to human skin. Furthermore, the GSR sub-circuit
output current is limited at 0.5<� by a current-limit resistor.

Hardware noise reduction. There are three main hardware
noise sources in our system: (1) electromagnetic noises from the
surrounding environment coupling into the signal wires and human
body, (2) parasitic noise from electrical components in the sensing
sub-circuit itself, and (3) cross-talk noise induced by high-speed
digital components into the analog domain. The EEG acquisition
module provides a driven right leg circuit [116] which helps to elim-
inate common-mode noise coupled into the human body. To further
increase the signal-to-noise ratio, we put the ampli�ers of sensing
circuits close to the point of measurement, and the wires are kept
as short as possible. Additionally, all of the electrical components
used to construct Painometry hardware are high precision with
low tolerance level. We designed SIP sensors to operate at high
frequency (10 :�I – 100 :�I) in order to avoid the superposition
on meaningful frequency bands of EEG (i.e. below 100 �I). We also
add the low-pass �lter RC on EEG and GSR sub-circuit to eliminate
the e�ect of high-frequency AC signals from SIP generator.

Cross-talk noise between digital and analog sources is alleviated
by ground separation in hardware design including (i) separation of
the analog ground domain and digital ground domain and (ii) sepa-
ration between each sub-circuit as depicted in Fig. 6. Furthermore,
the SIP measurements of the two corrugator groups are processed
sequentially to avoid interference from 2 AC sweep sources. Thus,
the SIP sub-circuit utilizes an analog switch to consecutively inter-
change the SIP measurement between the two muscle groups.

5.2 Implementation
Fig. 5 shows the overview of Painometry hardware schematic with
the corresponding SIP, EEG, PPG, and GSR modules. and Fig. 6
shows the corresponding fabricated PCBs. Fig. 8 shows the example
of the change in sensing data captured by Painometry multimodal
sensing hardware under the in�uence of pain-inducing stimulation
experiment (the details of experimental protocol are in Sec. 7)

SIP sensormodule.Webuilt a SIP sensor from the high-resolution
impedance analyzer AD5933 [1] and the low noise op-ampAD8606 [2].
To measure SIP from 2 corrugator muscles sequentially, we use the
analog switch TS5A23159 [105] and four electrode montages over
eyebrows. The SIP sensor sweeps 10 excitation signals over the
range of 10kHz to 100kHz at 0.98+?? and maximum output current
of 0.25<�.

EEG sensor module. We built an EEG sensor module with the
core as TI-ADS1299, the ultra-low noise ampli�ers with internal
noise at 1uV (peak-to-peak). This module can check the electrode-
skin contact impedance using lead-o� detection to ensure high-
quality signals before the recording. This feature is also used to
measure /⇢1( and /⇢2( in the SIP circuit model to calibrate the
SIP measurement. EEG hardware uses ten electrodes including 6
EEG channels (T3-T4, Fp1-Fp2, and F7-F8), one reference , and one
bias. The location of reference and bias electrodes depend on the
form-factor of Painometry, i.e. T5-T6 in a hat or a headband; and at
the temple tips of the eye-glass form-factor.

GSR sensor module. We built a GSR sensor based on a non-
inverting amplifying circuit with the single micro-power precision
ampli�er LMP2231 [61] and a precision micro-power shunt voltage
reference LM4041 [60]. The GSR sensor uses two electrode mon-
tages on top of the forehead. The gain resistor was tuned so that
the swing range of GSR output expands as much as possible in the
ADC reading range of the main MCU. The GSR sub-circuit output
current is limited at 0.5<� by a current-limit resistor.

PPG sensor module. We use the reference design of a pulse
sensor [83]. In this design, there is a super-bright green LED used
with the dominant wavelength at 525nm accompanied by a highly
sensitive light sensor to pick up re�ected light from the artery. The
green LED and light sensor are placed in the middle of the forehead
as discussed in Sec. 2.

Putting together Painomerty.Weuse the TIMSP432P401R [70]
as the main MCU which connects to SIP sensor via I2C, to EEG
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Figure 8: Painometry sensor measurements: (a-b) Normalized average SIP measurement with di�erent pain levels; (c-d) Power
Spectrum Density envelope of gamma and beta bands in EEG from T4 montage; (e) GSR and (f) PPG measurement with peak
detection of HR/HRV trend in experimental pain stimulation.

sensor via SPI, and to GSR, PPG sensor via analog I/O. This low-
power MCU has enough high performance to satisfy SIP computing
requirement. Sensor measurements are then broadcasted out via a
Bluetooth module [87]. Finally, we mount all electrodes and both
hardware PCBs onto a Velcro �exible patch, which can be easily
mounted on various form factors such as a hat, a headband, or a
eye-glass. Fig. 7 shows the sensor placements on those form-factors.
While both SIP sensors (4 electrodes in total) can be mounted on
eye-glass, in other 2 form-factors, those sensors are adjusted on-the-
�y with 2 �oating electrodes (not shown in the �gure). Fig 9 shows
the whole hardware modules and sensor connection assembled on
a heaband, which we use for our experiment and evaluation.

6 OBJECTIVE PAIN QUANTIFICATION
6.1 Signal Pre-Processing
In Painometry, we analyze signals collected from four sensing
sources: SIP, EEG, GSR, and PPG. Each signal is pre-processed
di�erently due to the di�erences in their respective signal proper-
ties such as frequencies of interest, sampling rate, and noise e�ects
before they are passed through the feature analysis pipeline (Sec.
7.2).

Signal cleaning process. Even with our e�ort in minimizing
hardware noise as presented in the previous section, the raw sensing
data is still prone to noise including (1) DC drifting, (2) 50/60Hz
power line interference, and (3) user movement artifacts. Hence,
we continuously process raw data using an overlapped sliding
window. We initially apply a spline interpolation method so that all
measurements have the same length. We then remove the DC linear
trend of each window (except GSR measurement) by subtracting
the 6th-order polynomial �t from the original signals. The reason
GSR is left out is because useful information such as the tonic
component (skin conductance level) can be extracted from the DC

trend. Finally, we apply a notch �lter to further suppress 50/60Hz
power line interference and lowpass �lters of 1Hz and 100Hz to the
PPG and EEG signal, respectively, to remove unexpected movement
artifacts.

EEG decomposition. Pain features spread across di�erent re-
gions of the frequency domain (i.e., Alpha, Beta, Gamma, Delta,
Theta) [50, 53, 75]. As a result, a single frequency band does not
fully capture the brain’s response to pain. Therefore, decomposing
signals into multiple frequency bands facilitates more distinctive
features to be extracted. Classical approaches have used bandpass
�lters to extract di�erent frequency bands. However, applying a
bandpass �lter causes low-frequency background drift, spoils the
endpoints of the signal, and may lead to the loss of crucial details
about acute pain. Fourier transform [8] is another common attempt
that breaks down the signal into a sum of sinusoidal base functions
in order to determine the signal’s spectral components. However,
since these sinusoidal base functions are, by design, in�nite signals
in the time domain, this method results in the loss of temporal
information when each frequency band is reconstructed in the time
domain. Wavelet decomposition [31], on the other hand, is better
suited for non-stationary signals which may vary instantaneously
in time [23], as do the biosignals recorded here. Thus, we leverage
this approach and apply a 6th-order Daubechies 9 wavelet decom-
position to extract the �ve frequency bands of interest from the
cleaned EEG signal.

Peak detection and HR/HRV calculation. Each heartbeat
creates a peak that can be seen clearly in each PPG window. Thus,
we apply a peak detection algorithm onto a sliding sub-window.
After that, the heart rate variability (HRV) is calculated by taking
the standard deviation of all the heartbeat interval inside a chunk
data. The sub-window slides overlap until they �nd a local peak
above the magnitude threshold. Then the sub-window skips the
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sliding over this heartbeat interval and look for the local peak of
the next heartbeat interval.

6.2 Pain Features Extraction
After obtaining and pre-processing the EEG, GSR, PPG, and SIP
signals, the collected time series data from each source is segmented
to �xed-size epochs, and selected features are extracted from each
epoch to be used for classi�cation of the pain level in that epoch. In
the following sections, we present the feature selection and classi�-
cation steps in our pain level quanti�cation pipeline. Informed by
the literature, the features selected for extraction from each signal
are from a variety of categories as follows:

Temporal features. This category includes statistical features
for time series data analysis, namely, mean, variance, skewness,
and kurtosis. In pain classi�cation, both GSR and SIP signals are
often analyzed in time domain due to their considerable variation
in amplitude and lack of distinctive frequency patterns [27, 101].
Hence, those four temporal features are extracted from single GSR
channel and ten channels of SIP. Furthermore, since heart rate
changes when one experiences the pain [104], we choose heart rate
variability as one independent temporal feature. Overall, there are
45 temporal features extracted (i.e., 4 GSR, 40 SIP, and 1 HRV).

Spectral features. The spectral features are extracted to analyze
the characteristics of EEG signal because brain waves are generally
available in discrete frequency ranges at di�erent stages [59, 110].
By transforming the time series EEG signal into the frequency do-
main in di�erent frequency bands (i.e., Theta, Alpha, Sigma, Beta,
and Gamma) and computing its power spectrum density, various
spectral features can be extracted. All the spectral features are ex-
tracted from the EEG signals at T3, T4, Fp1, and Fp2 channels ,
which include the ratio of powers, absolute powers, theta/gamma,
theta/alpha, and sigma/gamma. Accordingly, 13 features are ex-
tracted from each of the four channels of EEG, which provides 52
spectral features in total.

Non-linear features. Bioelectrical signals show various com-
plex behaviors with nonlinear properties. In particular, the chaotic
parameters of EEG can be used for pain level classi�cation. The dis-
criminant ability of nonlinear analyses of EEG dynamics is demon-
strated through the measures of complexity such as correlation di-
mension, Lyapunov exponent, entropy, fractal dimension, etc. [100],
with the last two features proven to be most informative. In this
study, we extract these two non-linear features for each of the EEG
channels (a total of 8 features).

Tab. 1 summarizes the features we extract from each type of
signal under each category of features in this study.

6.3 Pain Feature Selection
Even though each extracted feature can capture certain charac-
teristics of the input signals, the performance of a classi�cation
algorithm can be degraded when all possible features are used to-
gether, mainly due to feature redundancy. In particular, some of
the features may be irrelevant or redundant, further reducing the
classi�cation accuracy.

In order to select a set of relevant features among the 105 ex-
tracted features, we need to compute the discriminating ability of
each feature when they are used in combination. However, it is

Type Signal Feature
Temporal GSR, SIP -mean, variance

-skewness, kurtosis
Temporal PPG -heart rate variability
Spectral EEG -absolute spectral powers

-relative spectral powers
-relative spectral ratio

Non-linear EEG -fractal dimension, entropy
Table 1: List of pain features

computationally infeasible to test all of possible combinations. To
identify the most e�ective combination of features, we adopt three
feature selection methods, namely, Recursive Feature Elimination
(RFE), L1-based feature selection, and tree-based feature selection.
RFE [14] is a greedy optimization algorithm that seeks to improve
generalization performance of the classi�cation model by removing
the least important features whose deletion will have the least e�ect
on training error. L1-based feature selection [55] is used for linear
models including Logistic Regression and Support Vector Machines
(SVM). Since we apply these linear models during the classi�cation
process, we use L1 norm to remove features with coe�cients of
zero. Finally, with tree-based feature selection [30] takes a di�erent
approach by computing importance of features which in turn is
used to remove irrelevant features.

6.4 Pain Level Classi�cation
Various classi�cation methods including the Support Vector Ma-
chine (SVM), Logistic Regression, Decision Tree and Random Forest
have been proposed in literature for pain or stress level detection,
each shown to be e�ective in speci�c settings [27, 110]. To be
inclusive, we deploy all these models in this study and perform
an empirical comparative analysis to identify the best performing
model for our pain level identi�cation system (see Sec. 7 for our
experimental results).

Sample fusion based GMM: The acute pain feeling remains
the same over a short period; hence, we perform a fusion approach
to combine the data in one period to improve the performance.
We explore the use of the GMM feature aggregation technique to
encode 16 data signals into one sample. For each epoch of data, we
train the GMM model using the Expectation-Maximization (EM)
algorithm. The means of GMM is concatenated to form the sample
data for this signal.

7 PERFORMANCE EVALUATION
Here, we discuss in detail the set of experiments conducted to
evaluate the overall performance of Painometry. Also, we evaluate
our proposed SIP sensor performance to demonstrate its ability
to capture the autonomous muscle movements. In particular, we
evaluate the following aspects: (1) reliability and safety of the exper-
iment protocol, (2) performance of pain quanti�cation pipeline, and
(3) user experience survey. We deployed the classi�cation model
on a Google Pixel 2 [29]. The average runtime is about 0.17 ms per
classi�cation along with 14% CPU usage and 75MB memory usage.
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Figure 9: Painometry headband form-factor and pain-
inducing experiment setup

7.1 Experimental Methodology
Our experimental design goals are (1) inducing clearly distinguish-
able pain levels in order to get true labels for the ground truth of 4
di�erent pain states (i.e. no-pain and 3 pain levels), (2) avoiding the
e�ects of short-term pain tolerance, and (3) ensuring the safety of
the experimental conditions. Since we understand the goals, com-
plexity, and unpleasantness of this research study, our experimental
pain-inducing device and protocol has been thoroughly designed
and approved by the Institutional Review Board (IRB) of University
of Colorado, Boulder. Participant demographics are shown in Ta-
ble 2. All subjects in our study were pre-screened to be pain-free at
the time of experiment, i.e. no chronic pain.

Existing pain-related research has used various methods to in-
duce experimental pain such as pressure pain [11, 15, 42], thermal
pain [21, 41] and cold pain [114]. Each method has its own un-
pleasantness and side e�ects after the experiment (e.g. bruise after
pressure pain, skin burnt after thermal pain or allergy after cold
pain). We chose pressure pain induced on subjects’ thumbs as our
experimental pain method because we can guarantee the develop-
ment of acute pain (similar to postoperative acute pain) with a clear
distinction between di�erent pain levels. Also, this method has a
low probability of producing side e�ects (3 bruises reported from
20 subjects in our pilot study and 23 subjects in our research study).

Participant Demographics
Age (years) 21 - 52 years old
Participant groups 20 in pilot study, 23 subjects
Pain states 4 (pain-free and 3 levels of pain)
Data collection 12 pain-inducing runs, random order
Bruise after experiment 9.1% (3 subjects)

Table 2: Data collection details.

Pressure pain device (PPD). The PPD is designed to be safe
and accurate in delivering experimental pain. This device includes
the mechanical pain delivery component (with a piston-like front-
end), the pressure controller hardware and a compressed air tank
as shown in Fig. 9. The device is designed with a handle to keep the
hand comfortable and still while receiving pressure. A hardware
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Figure 11: Average rating
across subjects

pressure regulator limits pressure to below 14 :6/2<2 to prevent
excessive pressure. Pressure intensity and duration are controlled
by our LabView implementation. PPD tracks both valve pressure
and piston-to-thumbnail pressure level in real-time. To ensure the
safety of the device and experimental protocol, the mechanical
pain delivery component is held together by 2 asymmetrical screws
which gives subjects the ability to remove their thumbs at their
discretion.

Pain stimulation protocol. The protocol is designed to deliver
clear distinct pain levels to the subject and to avoid the e�ects of
short-term pain tolerance. We use PPD to create 3 di�erent pain
levels of mild, moderate, and strong. Each subject will experience 12
stimulation runs (i.e. 4 runs for each pain level) in a pseudo-random
sequence. Each run is divided into 3 intervals: T1 (before the stim-
ulus) is �rst and lasts 16 seconds, T2 (pain stimulus onset) is next
and lasts 16 seconds, and T3 (after the pain stimulus ceased) lasts 30
seconds at least. During the experiment, the Painometry headband
records the subjects’ biosignals through all the runs. The subjects
rate their pain subjectively using the VAS scale right after T2. In
addition, T3 is adjusted on-the-�y in order to ensure the subjects’
thumb returns to normal feeling before each stimulation run. Fig. 10
and Fig. 11 prove the correctness and reliability of PPD in delivering
pain perceptions and shows the corresponding valve pressure lev-
els, thumbnail pressure levels, and average normalized pain rating
for each pressure level across 23 subjects. The pressure applied on
the subjects’ thumbnail scales proportionally to 3 valve pressure
levels. The average pain rating shows the correlation of pressure
levels to the subjects’ rating on stimulation runs.

7.2 System Performance
We evaluated the performance of our proposed SIP sensing method
and pain quanti�cation pipeline using the accuracy, precision, and
recall as performance measures. First, we evaluated the impact of
using di�erent feature selection approaches, using each Painometry
sensor in isolation. Then we performed Leave-one-out cross valida-
tion (LOOCV) to evaluate classi�cation accuracy on 2 data sets: (i)
3 pain levels (no-pain, mild, and strong pain) and (ii) 4 pain levels
(no-pain, mild, moderate, and strong pain). During each iteration
of LOOCV, 22 of 23 subjects’ data are used to train our model and
the remaining one is used to validate the prediction pain level. This
process is repeated for all 23 subjects to estimate the accuracy on
the unseen data. Towards this end, we use accuracy, precision, and
recall as performance measures.
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Figure 12: Impact of feature
selection methods

Figure 13: Impact of sensor
combinations

We �rst evaluated the performance of various feature selection
methods by performing the data-split validation on our data set.
Fig. 12 displays accuracy when the features are selected from the
RFE, Tree-based, and L1-based approaches. The result shows that
RFE with Decision Tree provides the best accuracy of 96.7% among
the combination of feature selection methods and classi�ers.

To study the expressive power of the features extracted in our
pipeline, we calculated the correlation between each of the extracted
features and the pain levels using the cor package in R [52]. As
illustrated in Fig. 14, the features extracted from the SIP signal have
the highest correlation with the pain levels with a mean of 0.6.
Features from the EEG, PPG, and GSR signals ranked in the second,
third, and fourth, respectively.

Sensing Method Level Accuracy
[110] EEG 2 95.3%
[12] fMRI 2 84%
[95] EEG 2 78.5%
Painometry SIP, EEG, GSR, PPG 3 89.5%
[71] EEG 3 83%
[65] GSR 3 77.4%
[47] Video, EMG, GSR 4 83.1%
Painometry SIP, EEG, GSR, PPG 4 76.7%
[16] GSR, ECG 4 75%
[112] fMRI 5 84.2%
[71] EEG 5 62%

Table 3: Leave-one-out cross validation performance com-
parison with some notable existing works

In our next evaluation, represented by Fig. 13, we studied how
using di�erent combinations of biosignal sensors would impact the
classi�cation accuracy. In order to test the feasibility and impact
of SIP sensor, we also quickly perform the data-split validation
on our data set. As illustrated, using only GSR and PPG signals
can classify the pain levels at an accuracy of 27% and 59% without
the SIP, respectively. On the other hand, considering only EEG or
three signals of PPG, GSR, and EEG without SIP signal can achieve
an accuracy of 49% and 66%, respectively. Consequently, it proves
the feasibility that SIP sensor has a high impact on improving the
accuracy.

The top features as ranked by RFE demonstrate most distinguish-
ing power for classi�cation include a variety of SIP features (ranked

Figure 14: Correlation coe�-
cients
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subjects

highest), followed by heart rate variability, a number of EEG at T3
and T4 channels, and GSR mean. We used this feature set for the
rest of our LOOCV evaluation.

Fig. 16, 17, 18 show the average performance of 3 and 4 pain level
quanti�cation respectively using di�erent classi�cation method in-
cluding Logistic Regression (LR), Decision Tree (DT), Support Vec-
tor Machines (SVM), Random Forest Classi�er (RFC), and XGBC. As
illustrated, the maximum accuracy of 89.5% and 76.7% is achieved
using DT and RFC for 3 and 4 pain levels respectively among dif-
ferent classi�cation methods. On the other hand, the LR method
provides the least accuracy on both data set of 75.14% and 67.39%.
Fig. 15 shows the accuracy from each subjects.

Tab. 3 shows the comparison of our system to other quanti�ca-
tion methods of experimental pain based on state-of-the-art labora-
tory sensing systems using fMRI and biosignal sensors. Given our
wearable device, we are able to achieve pain quanti�cation accuracy
for 3 and 4 levels on par with those previous works. This shows
that the Painometry provides reasonable and reliable results.

Painometry hardware power pro�ling. We used the Mon-
soon power measurement tool [69] to validate the power consump-
tion of current Painometry prototype. At operating voltage of 3.3
+ , our fabricated hardware has an average power consumption of
292.1<, in the active state (measuring sensor and streaming data
via Bluetooth), and (2) 56.8<, in idle state (only MCU running
in sleep mode). Using a 500-<�⌘ battery can maintain the Painom-
etry hardware for 5.6 hours in the active state continuously. The
sensing sub-circuits and Bluetooth communication module have
the highest power consumption of 129.4<, and 93.7<, respec-
tively. In order to �t the needs of all-day usage, we can further
increase the operation duration of Painometry by optimizing hard-
ware components (i.e. MCU, external ADCs, and BLE with lower
power consumption) and larger sized battery.

7.3 User study
While developing and evaluating Painometry, we also conducted
a survey to identify gaps in our system and the expectations of
the users (both users with the experience of wearing Painometry
during the experiment and prospective users). This information
provides us the insight to improve Painometry in the future.

We distributed our survey to 35 people, including our 23 subjects
and 12 subjects who had no prior experience with Painometry.
Fig. 19 shows �ve questions we asked and the statistics on our
participants’ answers. Speci�cally, analyzing the result of Question
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Figure 16: Average accuracy. Figure 17: Average precision. Figure 18: Average recall.

“How hard is it for you to quantify your pain objectively?” shows
that it is not easy for everyone to objectively rate their pain. From
Questions “When was the last time you had to / you struggled to
rate your pain?”, we see that 11 out of 35 participants experienced
pain within a week; and nearly 80% of them struggled to rate it. As
a result, this statistics demonstrates a need for the objective pain
quanti�er.

1 . How hard is it for you to 
quantify your pain objectively?

2. When was the 
last time you ...

3.How long would you 
feel comfortable...

struggled to rate 
your pain?

had to rate 
your pain?

wearing 
Painometry?

wearing SIP 
sensor?

Figure 19: User study results

Finally, we studied how long people arewilling towear a headband-
like device with the placement of sensors on their forehead and
around their head during the use. The answers to the question,
“How long would you feel comfortable wearing Painometry and SIP
sensor?”, suggest that people can tolerate to wear such a device and
sensors for 15-30 minutes at most. This information helps know
the need of improving the comfort of our current design as well as
building a timing constraint in a pain intervention system.

8 RELATEDWORK
Pain quanti�cation systems. There have been various systems
relying on either single or multiple sensing modalities to quantify
pain [33, 35, 43, 50, 53, 66, 67, 71, 75, 90, 96, 102, 113]. In [53], Ku-
mar et al. proposed an EEG-based system that can quantify the
patient’s physiological response to pain under general anaesthesia.
In this system, the authors developed a real-time pain index based
on an easy-to-access biosignal. Using the same EEG input, Kagita
et al. [50] proposed a binary classi�cation of whether the user has
pain or not with an accuracy of 100%. However, this model was not

cross-validated or tested on a new dataset. Consequently, it su�ers
from over�lling to be considered as a reliable tool for pain classi�ca-
tion. Besides the use of frequency band power, [71] extracted more
features including fractal dimension, Shannon entropy, approxi-
mate entropy, and spectral entropy and achieved around 62-83%
accuracy in detection of 3 or 5 pain levels. Another commercial
product in this single sensing modality group is the PainQx sys-
tem [75], which has developed a source localization algorithm for
improved analysis of EEG data of pain patients. Di�erent than the
aforementioned systems, Seok et al. [96] focused on proposing a
set of optimized algorithms for a continuous postoperative pain
assessment tool based on the analysis of a pulse contour of PPG
signal.

To further enrich the pain quanti�cation resolution, many sys-
tems have been developed to measure other signal types such as
skin conductance [102], facial features [35, 90], heart rate variability
(HRV) [43], and trunk strength [66]. Speci�cally, [33, 113] advanced
the automated pain recognition system with various biopotential
data including EEG, EMG, ECG, and skin conductance level. Salah et
al. [92], otherwise, proposed a system that fuses geometric facial ex-
pressions and physiological signals to quantify pain. It captures both
similar physiological signals and analyzes the movements of many
of the facial muscles emphasized in the FACS manual [22]. The sys-
tem also relies on a unique algorithm incorporating a SVM linear
model and video signal databases. In the same use case of where pa-
tients are unable to communicate as [53], PMD-200™ [67, 68] pain
monitoring device developed by Medasense company, on the other
hand, is a tool that uses a derivation from the nonlinear composite
of heart rate (HR), HR variability, amplitude of the photoplethys-
mogram, skin conductance, �uctuations in skin conductance, and
their time derivatives to de�ne a novel multidimensional index of
nociception, the nociception level (NOL) index.

Additionally, several patents also applied the concept of quanti-
fying pain by measuring various vital signals and movements [3,
44, 82]. These patents describe endeavors to integrate an exten-
sive range of noninvasive methods for monitoring patients’ daily
physiological and environmental stressors in objective, quanti�able
schemes via portable devices. The integration of multiple signals
has become a trending solution to boost the performance of high-
resolution pain quanti�cation systems. However, to collect multiple
signals, form factors are cumbersome, uncomfortable, and require
many accessories, which make systems unusable in daily life. In
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contrast to existing systems, our system is light-weight and requires
a minimal number of sensors.

Muscle pro�ling techniques. Applying AC currents to deter-
mine the impedance of body tissues actively has already existed.
It has been widely used in various healthcare applications. Exist-
ing technology is relatively simple, e�ective, fast, and noninva-
sive. Its most popular application is to estimate body composi-
tion [26, 63, 97], which typically uses 50 kHz AC at less than 1mA.
Multi-frequency measurements, or a frequency spectrum, are also
being used to evaluate di�erences in body composition caused by
di�erent clinical and nutritional conditions [49, 76, 109]. Another
application of this technology is to determinemuscle diseases. In [7],
the authors used this technology to predict skeletal muscle mass.
Meanwhile, it is also an alternative for myography, which is a study
of the velocity and intensity of muscular contraction [7, 58, 93, 98].

Though SIP shares the same fundamental principle of impedance-
based pro�ling with the aforementioned techniques, its advantages
lie in the abilities to (1) measure impedance of the singular muscle
group under skin, (2) provide more detailed information about the
muscle over a range of sweeping excitation frequencies, and (3)
specify with greater precision the area of muscle of interest.

9 DISCUSSION
Chronic pain vs. Acute pain.We have shown the e�ectiveness
of using Painometry in classifying di�erent experimental acute
pain levels, allowing for more objective monitoring of indicators
of acute postoperative pain during a critical period in the reha-
bilitation process. Since there is a strong correlation between the
severity of acute postoperative pain and development of chronic
pain [80], the algorithm and feature selection of physiological ex-
pressions (i.e., SIP, EEG, PPG, GSR) in this paper will be useful as
we extend Painometry to chronic pain quanti�cation. Since the
existing experimental stimulation device does not support mobility,
we plan to design and seek permission for new protocol before
evaluating Painometry with in-the-wild scenario in the near future.

Limitation. The target of Painometry system in this work is
classifying di�erent experimental acute pain levels in the controlled
in-lab experiment setup. Thus, the system at the current state is
prone to false positives from the frown expression Painometry .
While the SIP method has the advantage of capturing the move-
ment of the targeted group muscle only (i.e. corrugator supercilli)
and Painometry can address motion and environmental noises,
there are several artifacts that pose as challenges to its usability in
the real world. In particular, frown expression and sweating can
introduce noises into the SIP and GSR measurement respectively.
It is part of our future work to optimize the sensors and system in
order to enhance the practicality of the system.

Application to a range of form factors. Furthermore, we
have demonstrated in this work the versatility of the Painome-
try electrode arrangement in its application to a range of unique
form factors. Presumably, the convenience of o�ering the system
in a range of wearable form factors ensures repeated and continued
use during the postoperative recovery period.

Towards a closed-loop pain intervention system. The Pain-
ometry system has the potential to be applicable in rehabilitation

settings, contributing to interventional therapies that bypass med-
ication schedules used to relieve long-term pain. A recent study
similarly interested in developing an automatic, objective measure-
ment of signals indicating chronic pain has been successful in recog-
nizing and classifying video recordings of pain-related movements
and facial expressions in a group of chronic pain patients [5].

Once we are able to classify di�erent pain levels based on biosig-
nals, the next logical step would be to analyze the transition be-
tween pain states taking into account the biopsychosocial model of
pain. Such a model can provide insights on not only the physiologi-
cal markers of pain transition but also the psychological triggers
of pain. This has the potential to help predict pain episodes before
they happen and further develop a closed-loop, just-in-time, and
drug-free pain coaching system.

10 CONCLUSION
In this work, we propose Painometry, a wearable system that pro-
vides automated and pain quanti�cation in daily life. Notably, the
Painometry prototype captures the changes in multiple biosignals
from the subject during pain. Based on our research and under-
standing of the anatomy and physiology of pain, we have designed
Painometry to model the relations between pain and the recorded
biosignals. From the relations observed, we have established dif-
ferent pain quanti�cation levels. The Painometry prototype has
been evaluated on 23 subjects (8832 data points from 276 min-
utes) through an IRB-approved pain-inducing protocol, and show
89.5% and 76.7% accuracy of pain quanti�cation under 3 and 4 pain
states respectively. Finally, Painometry is our �rst step in targeting
chronic pain quanti�cation, detecting psychological pain triggers,
and developing a fully closed-loop ‘just-in-time’ pain intervention
system.
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